
 WAVECREST Corporation

TESTING 270MHZ PLL CLOCK DEVICES

ON A TRILLIUM ATE TESTER

WITH THE WAVECREST DTS 2070

Application Note No. 125

2

WAVECREST Corporation continually engages in research related to
product improvement. New material, production methods, and design
refinements are introduced into existing products without notice as a
routine expression of that philosophy. For this reason, any current
WAVECREST product may differ in some respect from its published
description but will always equal or exceed the original design
specifications unless otherwise stated.

Copyright 1997

WAVECREST Corporation
A Technologies Company

7275 Bush Lake Road
Edina, Minnesota 55439

(612) 831-0030
(800) 733-7128

www.wavecrestcorp.com

All Rights Reserved

3

Contents

Introduction ... 5

DUT Board Design Considerations... 5

ANSI/IEEE-488.2 Standard .. 6

Include Files .. 6

Data Types... 6

Termination Characters ... 6

Initialization Function ... 7

Identify Function ... 8

Pulse Find.. 8

Setup Function... 8

Measurement Commands.. 9

System Arming Macro .. 10

Program Example.. 10

Conclusions ... 11

References ... 11

4

5

Testing 270MHz PLL Clock Devices on a Trillium ATE Tester
with the WAVECREST DTS 2070

Introduction
The WAVECREST DTS 2070 Digital Time System is used with many ATE testers
to make the fast, accurate timing measurements for Phase Lock Loop (PLL) clock
devices. Many PLL clock frequencies range from 1GHz to 16MHz and have
specifications of 50ps to 150ps clock skew and 16ps to 300ps rms jitter. The PLL
Clock DUT (Device Under Test) in this application example operates at 270MHz, has
a 100ps clock skew, 50ps rms jitter specification and is free running.

Many ATE systems cannot make the frequency measurements and period jitter
measurements necessary for this type of DUT, because of basic operational frequency,
accuracy, and bandwidth (BW) limitations. Another problem for many ATE systems is
they have difficulty with asynchronous events and must resort to using match loops to
synchronize the DUT clock to the tester. For the following reasons, the WAVECREST
DTS 2070 was selected to test this asynchronous PLL clock DUT:

1. The DTS 2070 measures 10ps accuracy and femtosecond resolution.
2. The DTS 2070 typical jitter noise floor is less than 5ps.
3. The DTS 2070 communicates with the instrumentation IEEE-488

GPIB bus.
4. The DTS 2070 can measure any asynchronous event, one shot or averaged.

This application note discusses using the WAVECREST DTS 2070 in a high
performance IC testing PLL clock DUT application with the use of the Trillium ATE
tester as controller for the GPIB communications. This paper also covers the design of
the DUT board, and the GPIB commands to the WAVECREST DTS 2070 for setup and
measurement. Since the DTS is connected to the Trillium, this note also covers some
of the tester program language commands for GPIB communications.

DUT Board Design Considerations
The DUT board design considerations are as follows:

1. Maintaining a 50-ohm environment.
2. Crystal input XI and XO input circuitry.
3. Clock output circuitry and pull-up resistors.
4. Signal attenuation into the wave CH1 and CH2 inputs.

In response to customer demands, the WAVECREST DTS2070 Digital Time System was
designed for use with many ATE testers to make the fast, accurate timing measurements
the ATE systems cannot make—because of either basic accuracy or bandwidth (BW)
limitations. Most ATE test systems use UNIX-based workstations like the SUN in a
C/C++ environment with the NI-488.2M GPIB software driver and the NI interface. This
paper helps the test engineer write a test program to measure critical timing parameters
on ICs using the DTS with an ATE tester in an automated environment via the GPIB bus.

This paper explains how to:
1. Configure the GPIB device parameters in a NI-488 configuration file for the

GPIB software driver.
2. Include files that must be declared in order to perform the necessary function

calls of the GPIB software driver.
3. Initialize and set up the DTS with C/C++ software commands.
4. Utilize new, quick, easy-to-use setup and measurement macro commands for the DTS.

6

Some fundamental GPIB software commands must be performed for the controller/
instrument to communicate. This paper provides essential software examples that guide
the test engineer through successful execution of program instructions over the GPIB.

ANSI/IEEE-488.2 Standard
The ANSI/IEEE Standard 488.2 was released in 1987 with a common set of commands
that define protocol, error handling, status reporting, and data formats. All ATE test
systems have a GPIB/IEEE-488 bus available for interfacing to instruments that adhere
to these standards, whether the interface connects to the SBus slots or the SCSI port. The
DTS 2070 instrument conforms to the standards of IEEE-488.1 and IEEE-488.2 and
talks/listens to all ATE system controllers compliant to these standards.

Include Files
At the beginning of the DTS module are “include” files that need to be declared and are
essential to execute the high level function calls of the gpib.drv. It is important to use the
proper syntax for the function calls such as ibrd or ibwrt. Without the include file, the
call would be meaningless and the compiler would detect an error warning. The include
file is a preprocessor directive, so the compiler can perform preparatory work on the
source code before compiling.

The include files are as follows:
#include <stdio.h>
#include <strings.h>
#include "cib.h" /* gpib ibxx function library for c */
#include "dts2070.h" /* special calls supplied by WAVE */

Other include files, depending on system software, are:
#include <teradyne.h> /* custom ni driver j953 type testers */
#include "globals.h"
#include <sgtty.h>
#include "ni_gpib.h" /* custom ni driver for mt/lt1101 type testers */
#include <stdlib.h>
#include <mtbox.h>
#include "ugpib.h" /* custom ni driver se212 type testers */
#include "agile.h"
#include "ugpib.h" /* custom ni driver s9000 type testers */
#include "gpib.h" /* ni driver in C for sun */
struct device device
static int dts_no;
static char rdbck[256];

Data Types
The programmer needs knowledge of data types to properly declare variables for the
DTS. All voltage parameters are real and declared as double. All burst measurements
including AVERage and JITTer, are floating point and declared as double. All samples
are integer using modifier long and declared as long.

Termination Characters
All serial stream data transfers must be null-terminated by a GPIB EOI or the NL
character. The character for a NL (new line) is a ASCII 0A (hex), NULL is a ASCII
00 (hex) and EOI (end or identify) is a hardware line. This signifies when the GPIB
transmission is terminated. Therefore, the parser automatically detects the character
and terminates the data transfer.

7

Initialization Function
The DTS needs to be initialized only once at the beginning of the program. Without
the initialization and configuration, the controller/instrument will not communicate.
The common commands at initialization are sent to the DTS by high level function
calls of the NI488.2 software driver (gpib.drv). The calls of ibrsp (serial poll response),
ibsta (command status), ibrd (read), ibwrt (write), ibtmo (time-out), ibpad (primary
address), ibsad (secondary address), ibeos (end of string), ibeot (eoi on last byte), ibclr
(clear bus) are all part of this driver (gpib.drv).

The dts_initialize function is essential to: call the config file “dts2070,” communicate to
GPIB address 05, bring the instrument on line (ibonl), clear the GPIB bus (ibclr) and
status registers, and allow a 2.0 second delay for the clear to take effect. This ts_initialize
function works for all testers, and the code structure should be used as follows:

 void dts_initialize() {
 if ((dts_no = ibfind ("dts2070")) < 0)
 {
 printf (" GPIB initialization FAILED for BAD address or \n");
 printf (" GPIB cable connection or \n");
 ibonl (dts_no, 0); /* takes instrument off line = 0 */
 }
 else {
 ioctl (dts_no, IBGET, &device); /* optional statement associated with ibfind device */
 ibtmo (dts_no, T10s); /* time out 10 sec. */
 ibpad (dts_no, 5); /* primary address = 5 */
 ibsad (dts_no, 0); /* secondary address = 0 */
 ibeos (dts_no, 0); /* ignore eos char on read = 0 */
 ibeot (dts_no, 1); /* send eoi on last byte of write = 1 */
 ibonl (dts_no, 1); /* instrument on line = 1 */
 if (ibclr (dts_no) & ERR)
 printf (" ERROR in BUS CLEAR \n"); /* clear gpib bus */
 delay (2.0) /* delay 2 sec. to allow both bus to clear */

 ibwrt (dts_no, "*CLS; :SYST:HEADOFF; :SYST:LONGOFF; *ESE125; *SRE49",51);
 ibwrt (dts_no, ":ACQ:COUN100; :SYST:WAVSQU",26);
 if (ibsta & ERR) printf (" IBSTA ERROR \n");
 }
 return;
 }

The ibwrt call passes the arguments of the GPIB device address with the ASCII
command string and size of the string. Each ASCII command performs other
commands that clear the status register (*CLS), turn header information off
(:SYST:HEAD OFF), and follow the abbreviated truncation rule of four characters
for alpha mnemonics (:SYST:LONG OFF) as used throughout this application
example. The event status (*ESE125) and service request enable (*SRE49)
commands set up masking to obtain status information during serial polling.

The instrument commands (:ACQ:COUN100) set the sample size to 100 and
(:SYST:WAVSQU) set the pulse find to square wave for VOH/VOL measurements.
The ibsta call exchanges protocol to query status of command transfer to the DTS
instrument and reports if any ERR occurred (ERRor is a NI-488 gpib.drv declared
variable and has built-in error reporting). Once the function is complete to initialize,
invoke header format, setup masking for status reporting, acquire count, and report
error status; the next task is read a response.

Identify Function
First, a response (ibrd) must be read from the GPIB. An *IDN? command ensures

8

the GPIB communication of the DTS. The IDeNtify query returns a string “WAVE,
DTS2070, 1”. While waiting for the reply, performing a serial poll on the status byte
register to check that the MAV bit is set high is suggested. The Message AVailable status
bit indicates that the GPIB has data to transfer and can be read only after the bit is high.
Without the serial poll, the data may not be available and the read would be meaningless.

 void dts_identify() {
 ibwrt (dts_no, "*IDN?",5);
 if (ibsta & ERR) printf (" IBSTA ERROR \n");

int poll_status;
poll_status = 0;
 while (!(poll_status & 0x 10))
 {

 ibrsp(dts_no,&poll_status);
 }
ibrd (dts_no, rdbck,40);
printf (wave idn = %s \n",rdbck);

 return;
 }

Pulse Find
The DTS pulse find capability measures the peak voltages SINe or the VOH/VOL
SQUare on the CH1 and CH2 signals selected by the command:SYST:WAVSQU. To
initiate a pulse find (:ACQ:LEV) command, the instrument measures the signal high
level and low level. This function is necessary to automatically determine the 20 to
80% voltage percentage points for TT+ based on the signal VOL/VOH in the
:ACQ:RUNTT+ application.

 void dts_levtt() {
 ibwrt (dts_no,":SYST:WAVSQU; :TER?; :ACQ:LEV; :TER?",36);

 while (!(poll_status & 0x 10))
 ibrsp(dts_no,&poll_status);
brd(dts-no, vmax-str, 20);

return;
}

The :CHANSTOP:MAX? query returns VOH data. This function is necessary not
only for determining amplitude verification of an output signal VOL and VOH, but
it is also necessary for determining overshoot and/or undershoot parameters.

Once the proper response is returned from the DTS, the next step is to use
:SYSTEM:MACRO commands to set up the DTS.

Setup Function
The :SYST:MAC command is fast, easy-to-use, and maintains an exact sequence of
commands necessary to complete a setup that specify functions, channels, arming
mode, and threshold voltages. The three setups below for functions TPD++, PW+,
TT+ are stored in memory under *SAVel and a OPeration Complete command
(*OPC?) queries a response from the DTS to status byte the MAV bit when ready.

9

The setup function writes important instructions to the DTS that will assign proper arming
modes with channel information and threshold voltage values to accomplish a measurement.
Maintaining an exact sequence of commands as structured in the :SYST:MAC command is
recommended. Always follows a sequence of function, channel, arming and voltage,
especially during the first basic measurement setup. Later, you may want to change arming,
count cycle or even threshold voltages, and with a basic setup, simple changes are sufficient.

void dts - setup{
ibwrt(dts_no,":SYST:MAC/TPD++/BOTH/AUT/STARTFIRST/ /2.000/2.000/", 53);
ibwrt(dts_no,":SYST:MAC/PW+/ 1 /AUT/STARTFIRST/ /2.000/2.000/’, 51);
ibwrt(dts_no,": SYST: MAC/TT+/ 2 /AUTSTOP/20 80///’, 36);
ibwrt(dts_no,"*SAV1; OPC?", 5);

while (!(poll-status & Ox 10))
{
ibrsp(dts_no,&poll_status);
}

ibrd(dts_no, opcck, 5);
printf (opc = %d \n", opcck);

return;
}

The save/recall commands store all 10 functions, channels and voltages with one save
command, therefore, in this example the three setups TPD++, PW+ and TT+ are in
memory under *SAV1. The query *OPC? and serial polling of the status byte register
for a MAV bit high assures the save is complete when ibrd response OPC = 1. Without
the serial polling of the status byte, the ibrd could read "0" signifying the *SAV1 was
not completed. Wait for the serial poll status, then do the ibrd.

Table 1 summarizes the three setups:

Function Channel Arming Enable Mode Trigger Voltage l Voltage2
TPD++ Both Auto Arm Start First User 2.000 2.000
PW+ CH 1 Auto Arm Start First User 2.000 2.000
TT+ CH 2 Auto Arm Stop 20% - 80% Vol Voh

Table 1. System Macro Command Setups

The three setups stored in memory can later be recalled by the command *RCL1 in
conjunction with the :AQRuire:RUN function command.

Measurement Commands
The measurement macro commands are very fast and easy to use. The quick measure
command (:ACQuire:RUN PW+) not only recalls the total setup for PW+ including
channel, voltage, and arming mode parameters; but also executes a measurement and
returns the AVERage and JITTer values.

void dts-measpw() {
ibwrt(dts-no,":ACQ:RUNPW+", 11);

while (!(poll-status &Ox 1 0)
{
ibrsp(dts-no,&poll_status);
}

lbrd(dts-no, resp, 100);
sscanf (&resp, "%f%f’, &average, &jitter);
printf("average = %e \n", average);
printf("jitter = %e \n", jitter);

return;
}

10

The need for additional commands and polling are eliminated by the (:ACQuire:RUN
PW+) command. The command performs internally, by the DTS firmware, a setup recall
for PW+, burst measurement and return measurement value. The program need only
serial poll the status byte and wait for the MAV ready.

System Arming Macro
Be aware that all the examples are in the auto arming mode for auto arm on stop, auto arm
start first, and auto arm stop first. If your application needs to use external arming with
arming on pulse count; a fast and easy to use :SYST:ARM macro command is available.
The :SYST:ARM command specifies trigger source, arming enable mode, channel arm, arm
threshold voltages, arm slope and arm count and has up to 10 arming arguments.

ibwrt(dts-no,":SYST:ARM/EXT/STARTFIRST/ARMl/ / / /POS/ /2/ P”, 46);

The :SYST:ARM macro commands are setting up the EXTernal arming mode with enable
sequence in the STARTFIRST mode. The ARM1 input will trigger off the start arming
input threshold voltage (determined by the pulse find) and the Arm l slope will be
POSitive and arm on start count of 2.

Program Example
The C++ Functions and commands of the DTS written in this application and incorporated
in the test program are shown in table no. 2.

Table No. 2 C++ Functions in test program.

Test Program

#include files

dts_initialize();

dts_identify();

dts_setup();

dts_levtt();

dts_measpw();

11

The arming enable modes are Auto arm on START FIRST for both the measurement of
the prop delay (TPD++) of channel 1 rising edge at 2.0vdc with respect to channel 2
rising edge at 2.0vdc, and the measurement of pulse width (PW+) of Channel 1 signal
(see table no. 3 for waveform examples). The arming mode enables the measurement of
"START before STOP" or START FIRST and is one of four special DTS arming enable
modes. The second arming mode, Auto Arm on Stop, assures the stop pulse will be
measured for rise time (TT+) at 20% to 80% of vol/voh. The DTS will measure any
random event or signal and with the arming enable mode the user can control which event
is measured first.

Chan 1 - Start

Chan 2 - Stop

Table No. 3 Waveform Examples

Conclusions
The test commands of the DTS written in this application are for a ATE Test system using
a UNIX in a C/C++ environment with the NI-488.2M GPIB software driver.

The WAVECREST Digital Time Scope makes the fast, accurate one-shot time interval
measurements necessary for automated testing. This paper will help the Test Engineer
organize and structure his test program; so he can properly accomplish status reporting,
serial polling, exchange protocol, convert measurement data formats, and utilize easy-to-use
macros. The need to measure critical timing parameters on ICs for propagation delays
(TPD), pulse width (PW) duty cycle, and rise times (TT+) with 10ps accuracy are
demonstrated in the application discussed in this document. With the measurement goals
and budget achieved, the user is able to write software to initialize the DTS via the GPIB
bus, save measurement setups, execute measurements and obtain critical device jitter data.

References
Mitchell Waite and Stephen Prata, New C Primer Plus, Second Edition, Sams Publishing, Carmel, IN; 1993.

National Instruments Corp., NI-488.2 M Software Reference Manual, 1992.

Kerry Newcom, Streaming Data Speeds Up IEEE 488 Bus, Evaluation Engineering, Nokomis, FL, June, 1993.

Herbert Schildt, ANSI C Made Easy, Osborne Mcgraw-Hill, Berkeley, CA.; 1990.

WAVECREST Corporation, Applications Note No. 110; Verifying ATE SYSTEM ACCURACY and Deskew,
June, 1993.

Operators Guide, Digital Time Scope DTS 2070. WAVECREST Corporation, Edina, MN.

Anatole Oiczak, UNIX System V Quick Reference Guide Release 4, ASP, San Jose, CA; 1993.

IEEE-488 Interface Guide, Digital Time Scope DTS2070. WAVECREST Corporation, Edina, MN.

TPD++

PW+

TT+Arm Start First
Arm Stop

WAVECREST Corporation WAVECREST Corporation
World Headquarters West Coast Office:
7275 Bush Lake Road 1735 Technology Drive, Suite 400
Edina, MN 55439 San Jose, CA 95110
(612) 831-0030 (408) 436-9000
FAX: (612) 831-4474 FAX: (408) 436-9001
Toll Free: 1-800-733-7128 1-800-821-2272
www.wavecrestcorp.com

200125-01 REV A

	Testing 270MHz PLL Clock Devices
	on a Trillium ATE Tester
	
	
	Application Note No. 125
	
	
	7275 Bush Lake Road
	References	11

	DUT Board Design Considerations
	ANSI/IEEE-488.2 Standard
	
	Include Files

	Data Types
	Termination Characters
	Initialization Function

	Identify Function
	Pulse Find
	Setup Function
	
	
	
	
	
	Table 1. System Macro Command Setups
	Measurement Commands

